Modulation of plasma protein binding and in vivo liver cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation.
نویسندگان
چکیده
Several studies have shown improved efficacy of cholesteryl-conjugated phosphorothioate antisense oligodeoxynucleotides. To gain insight into the mechanisms of the improved efficacy in vivo, we investigated the disposition of ISIS-9388, the 3'-cholesterol analog of the ICAM-1-specific phosphorothioate oligodeoxynucleotide ISIS-3082, in rats. Intravenously injected [(3)H]ISIS-9388 was cleared from the circulation with a half-life of 49.9 +/- 2.2 min (ISIS-3082, 23.3 +/- 3.8 min). At 3 h after injection, the liver contained 63.7 +/- 3. 3% of the dose. Compared to ISIS-3082, the hepatic uptake of ISIS-9388 is approximately 2-fold higher. Endothelial, Kupffer and parenchymal cells accounted for 45.7 +/- 5.7, 33.0 +/- 5.9 and 21.3 +/- 2.6% of the liver uptake of [(3)H]ISIS-9388, respectively, and intracellular concentrations of approximately 2, 75 and 50 microM, respectively, could be reached in these cells (1 mg/kg dose). Preinjection with polyinosinic acid or poly-adenylic acid reduced the hepatic uptake of [(3)H]ISIS-9388, which suggests the involvement of (multiple) scavenger receptors. Size exclusion chromatography of mixtures of the oligonucleotides and rat plasma indicated that ISIS-9388 binds to a larger extent to high molecular weight proteins than ISIS-3082. Analysis by agarose gel electrophoresis indicated that ISIS-9388 binds more tightly to plasma proteins than ISIS-3082. The different interaction of the oligonucleotides with plasma proteins possibly explains their different dispositions. We conclude that cholesterol conjugation results in high accumulation of phosphorothioate oligodeoxynucleotides in various liver cell types, which is likely to be beneficial for antisense therapy of liver-associated diseases.
منابع مشابه
bis-Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides are highly selectively taken up by the liver.
We previously modulated, by conjugating a single cholesterol, plasma protein binding and liver cell uptake of a phosphorothioate oligodeoxynucleotide (PS-ODN). In this study, we investigated the biological fate of a PS-ODN, denoted ISIS-9389 (3',5'-bis-cholesteryl-conjugated ISIS 3082), provided with two cholesteryl moieties. After intravenous injection of into rats, [(3)H]ISIS-9389 was cleared...
متن کاملCell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides.
Antisense oligodeoxynucleotides offer potential as therapeutic agents to inhibit gene expression. Recent evidence indicates that oligodeoxynucleotides designed to target specific nucleic acid sequences can interact nonspecifically with proteins. This report describes the interactive capabilities of phosphorothioate oligodeoxynucleotides of defined sequence and length with two essential protein ...
متن کاملHuman T-cell leukemia virus type I tax transformation is associated with increased uptake of oligodeoxynucleotides in vitro and in vivo.
We have utilized antisense oligodeoxynucleotides (ODNs) to modulate transcriptional activation by the human T-cell leukemia virus type I (HTLV-I) tax gene, the major transcriptional regulator of this virus. 3'-Terminal phosphorothioate-modified antisense ODNs were shown to efficiently inhibit Tax protein expression both in vitro and in vivo. Terminal substitution did not affect the affinity of ...
متن کاملIn vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells.
Systemically administered phosphorothioate antisense oligodeoxynucleotides can specifically affect the expression of their target genes, which affords an exciting new strategy for therapeutic intervention. Earlier studies point to a major role of the liver in the disposition of these oligonucleotides. The aim of the present study was to identify the cell type(s) responsible for the liver uptake...
متن کاملTargeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo.
Anti-sense oligodeoxynucleotides (ODNs) hold great promise for correcting the biosynthesis of clinically relevant proteins. The potential of ODNs for modulating liver-specific genes might be increased by preventing untimely elimination and by improving the local bioavailability of ODNs in the target tissue. In the present study we have assessed whether the local ODN concentration can be enhance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 28 14 شماره
صفحات -
تاریخ انتشار 2000